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ABSTRACT

There is growing interest in employing deep neural networks
(DNN) for image sharpening. However, sharpening medical
computed tomography (CT) images is challenging because
sharpening substantially amplifies high-frequency noise. Al-
ternatively, sharpening algorithms that are also designed to
denoise produce images lacking texture. Most importantly,
radiologists strongly prefer reading images at a consistent
level of noise. Hence it is preferable that a sharpening algo-
rithm not substantially change the noise energy or texture.

In this work, we propose a noise preserving sharpening
filter (NPSF) to sharpen CT images while keeping the noise
energy and texture in the result similar to that of the input.
We achieve this by adding appropriately scaled noise while
training. Furthermore, the NPSF is characterized by three
user-adjustable parameters which give flexibility to achieve
a desired level of sharpness and noise. Our experiments show
that the NPSF can sharpen noisy images while producing de-
sired noise level and texture.

Index Terms— Low-dose CT, deblurring, large focal spot
CT, deep neural networks

1. INTRODUCTION

Medical CT image sharpening is challenging due to the noise-
resolution trade-off. Li et al. showed in [1] that for a linear
reconstruction kernel, noise variance increases by f4 if the
spatial resolution is increased f times along all the dimen-
sions. The noise increases further for high-resolution kernels
[2]. Hence a variety of methods developed for sharpening in
the literature also employ some kind of denoising.

Model based iterative reconstruction (MBIR) algorithms
provide good spatial resolution and noise reduction [3, 4].
However, they tend to be computationally expensive. An al-
ternative approach is to improve resolution in either the sino-
gram [5] or image domain [6].

Recently, convolutional neural networks (CNNs) have
been among the most popular methods for image resolution
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enhancement [7]. CNN based methods either implement a
two-step process of sharpening and denoising [6, 8] or train
a single network for both tasks [9, 10]. However, due to the
noise-resolution trade-off [1], the algorithm performing both
tasks simultaneously may not be optimal [6]. Furthermore,
networks with embedded denoising are computationally ex-
pensive, require more hyperparameter tuning, and most im-
portantly, they tend to produce images that lack texture which
is critical in clinical applications [11, 12].

A generative adversarial network (GAN) can improve the
texture in the sharpened images [13]. However, GANs could
also possibly add inaccurate or even unreal image detail.

In this work, we introduce a noise preserving sharpening
filter, referred to as NPSF, that can be used to sharpen an im-
age while keeping the noise energy and texture in the result
similar to that of the input. Furthermore, the NPSF has three
user-adjustable parameters which control the sharpness and
noise level in the results. We achieve this by introducing ap-
propriately scaled noise with desirable texture to both input
and ground truth images while training a DNN. We verified
the performance of the NPSF for a real-world application, to
sharpen CT images acquired with an extra-large (XL) focal
spot and reconstructed with a high-resolution kernel. Our re-
sults demonstrate that the NPSF can sharpen images while
retaining the desired noise energy and texture.

2. NOISE PRESERVING SHARPENING FILTER

Let X be a noise-free high-resolution image and Y be the ob-
served blurred and noisy image. Our goal is to recover X̃
from Y , where X̃ is a high-resolution image which has noise
energy that is similar to Y but has less blur. To do this, we
train a sharpening algorithm fθ(.) with parameters θ by min-
imizing the mean squared error defined by

MSEX̂ = E[||X̃ − X̂||2], (1)

where X̂ is given by

X̂ = fθ(Y ) . (2)
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A challenge in training the proposed noise preserving
sharpening filter (NPSF), fθ(.), is to create appropriate train-
ing pairs (Yk, X̃k) for k = 1, . . . ,K, where K is the total
number of training pairs. In the prior literature, there are two
typical approaches to creating training pairs for a DNN-based
sharpening algorithm.

In the No-Noise Sharpener approach, ground truth is
taken to be a noise-free high-resolution image, and Yk is
created by blurring the ground truth image [7]. In this case,
the DNN gets trained to do pure sharpening. An important
disadvantage of this approach is that it does not account for
the sensor noise in an observed image. Consequently, the
DNN sharpener will substantially enhance the noise that is
inevitably present.

In the Denoising Sharpener approach, Yk is created by
blurring a noise-free high-resolution ground truth image and
adding noise [6]. In this case, the DNN gets trained to do
both sharpening and denoising. This second approach better
accounts for sensor noise in Y . However, it tends to result in
deblurred images with too much noise reduction, which can
result in an image, X̂ of (2), that lacks the texture which is
highly desirable to radiologists.

Our goal is to generate training pairs, (Yk, X̃k), that both
account for noise in the image Y and result in an estimate X̂
that preserves noise energy and texture, and enhances detail.
Below we describe the procedure for generating training pairs
that results in the noise preserving sharpening filter.

For every kth noise-free high-resolution training image
Xk, we first generate the input image

Yk = G(ρ) ∗Xk + λ1Wk , (3)

where G(ρ) is a Gaussian filter of standard deviation ρ =
[ρx, ρy, ρz] with ρx, ρy and ρz as the standard deviation of
the filter along the x, y and z direction, respectively, λ1 is a
parameter that controls the noise energy added to the blurred
image, and Wk is a noise image with desirable texture and
variance σ2

w.
Similarly, we generate the target image X̃k by adding a

scaled version of the same noise sample to Xk

X̃k = Xk + λ2Wk , (4)

where λ2 is a parameter that determines the noise energy.
To set the values of λ1 and λ2, we choose

λ1 = α

√
σ2
noise

σ2
w

, λ2 = βλ1 , (5)

where α and β are user-adjustable parameters, and σ2
noise is

the noise variance of the input anticipated in the application.
Intuitively, the parameter α allows one to set the standard

deviation of the noise in the training input, and β allows one to
control the standard deviation of the noise in the ground truth.
Typically, α = 1.0; so the noise variance in the training input

Fig. 1: Effect of β on noise in the sharpened image.

matches the noise variance anticipated in the application. The
value of β is then adjusted to meet the noise preserving con-
dition, i.e., that the noise variance of the DNN output matches
to the noise variance of the input. This is done experimentally
with the data that is typical for the application.

Fig. 1 plots the ratio of the output to input noise stan-
dard deviation measured experimentally as a function of in-
creasing β. Notice that larger values of β result in noisier
sharpened images. In particular, βNPSF corresponds to the
parameter value so that σ2

output = σ2
input, i.e., where the

output noise variance is matched to the input noise variance.
For this example, βNPSF = 0.87 for the setting in Fig. 1
(ρ = [0.34, 0.34, 0.22] mm, α = 1).

The parameter α determines the amount of noise added to
the training pairs and consequently, can be used to control the
suppression of other artifacts such as aliasing in the results.
Larger values of α result in fewer artifacts, but with the trade-
off of somewhat less detail. Finally, the parameter ρ controls
the level of sharpening. A larger value of ρ simulates higher
blur while training and thus producing sharper results.

3. EXPERIMENTAL RESULTS

We evaluate the NPSF for the task of sharpening CT images
that have been captured using an extra-large (XL) focal spot
size and reconstructed with a high-resolution kernel. We com-
pare to results obtained with the No-Noise Sharpener and the
Denoising Sharpener of Section 2, and all three networks use
the CNN architecture of [14].

3.1. Methods

For training, high-resolution images are acquired with a small
focal spot. Then noise-free high-resolution realizations, Xk,
are obtained by averaging multiple scans of the same phan-
tom. We used 2 phantoms to get 4 training images. To obtain
the noise realizations, Wk, 3 water phantoms are scanned.

The training and testing data was collected on a GE Rev-
olution CT scanner (GE Healthcare, WI, USA). The acquisi-
tion and reconstruction settings used are listed in Table (1).
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Resolution score
ROI std (HU)

0.7632
69.95

(a) Ground Truth

0.6433
53.70

(b) Input

0.6940
128.59

(c) No-Noise Sharpener

0.6891
31.70

(d) Denoising Sharpener

0.6936
56.54

(e) NPSF

Fig. 2: Results for Catphan. NPSF with ρ = [0.34, 0.34, 0.22] mm, βNPSF = 0.87, α = 1. Display window [0, 2000] HU.

All exams except water phantoms are reconstructed with the
Bone+ kernel, a high-resolution reconstruction kernel option
available on the GE scanner designed to preserve more edge
detail. The exams are reconstructed to a slice thickness of
0.625 mm and interval 0.3125 mm. Water phantoms are
reconstructed with filtered backprojection (FBP) to a slice
thickness of 0.625mm. The reconstructed training volumes
were broken into 128 × 128 × 7 patches, with the patches ran-
domly partitioned as 97% for training and 3% for validation.

Table 1: Training and test exams

Exams
Focal
spot

Dosage
(kVp/mA)

DFOV
(cm)

Tr
ai

n High resolution small 120/320 25
Water phantom small 120/350 40

Te
st

Catphan (phantom) XL 100/880 15
Catphan ground truth small 100/245 15
Exam 1 (clinical) XL 120/530 15

To train the network, we used the Adam optimizer [15]
with an initial learning rate of 0.001 and a mini-batch size
of 32. The learning rate was reduced by a factor of 4 if no
improvement in validation loss occurred for 5 epochs, and the
training was stopped if the validation loss was not improved
for 16 consecutive epochs. The network was implemented in
Keras [16] and trained with an NVIDIA Tesla V100 GPU.

3.2. Results & Discussion

Fig. 2 compares results for the Catphan exam acquired using
the Catphan 700 phantom [17]. The figure shows the ground
truth and input, along with results for the conventional and
NPSF methods. The resolution section of the phantom con-
sists of line pairs arranged at various spatial frequencies, and
the background region can be used to assess the noise am-
plitude and texture. Under each image there is a measure of
resolution and noise. The resolution score measures the vari-
ation of the line-pairs to the known variation of the phantom;

so an ideal resolution score should be 1.0, with lower values
indicating reduced resolution. For noise, the standard devia-
tion (std) in HU units for the ROI marked has been reported.

As seen in Fig. 2 (c), the No-Noise Sharpener produces
blocky artifacts on line pairs and areas around them. Further-
more, the noise has increased by a factor of 2.4 as compared
to the input image. Also notice, that the Denoising Sharp-
ener removes too much noise, resulting in a loss of texture in
regions such as the finest line pairs.

Alternatively, the proposed NPSF result of Fig. 2(e)
matches the input noise level while increasing the resolution.
This retains appropriate texture and detail while sharpening.

Fig. 3 shows the results for the Exam 1. As this is a clini-
cal exam, its ground truth is not available. The β parameter is
tuned for the noise preserving case. As seen in the second and
third columns, the No-Noise Sharpener drastically increases
noise and artifacts while the Denoising Sharpener loses tex-
ture. Alternatively, the NPSF (with α = 1.0 or α = 1.6)
sharpens the input image while keeping the noise level and
texture similar to that of the input. This is further evident from
the second row which shows a zoomed inner ear portion.

The fifth column of Fig. 3 shows the effectiveness of α
in controlling aliasing artifacts in the sharpened images. Ma-
genta arrows Fig. 3 (f) and (k) point to areas in the input
which are heavily affected by such artifacts. The No-Noise
Sharpener, Denoising Sharpener and NPSF with α as 1 have
sharpened these artifacts too, making them worse. However,
in contrast to conventional methods, increasing α to 1.6 in
NPSF reduces the aliasing artifacts in the results to a great
extent while having only a small effect on the sharpness.

Fig. 4 shows NPSF (α = 1) results for an input with
noise std of 74.63 HU. The number below each image in the
first row is the noise std for the respective result. The noise
std is computed using multiple uniform regions in the vol-
ume. Residual images in the second row show that higher ρ
achieves more sharpening. Most importantly, the noise mea-
surements show that if β is set appropriately then the NPSF
can keep the noise energy in the result similar to that of the
input. In addition to the noise preserving case, Fig. 1 showed
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Input No-Noise Sharpener Denoising Sharpener NPSF (α = 1.0) NPSF (α = 1.6)
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Fig. 3: Results for Exam 1. NPSF with ρ = [0.54, 0.54, 0.34] mm, βNPSF = 0.98. Display window = [-650, 1350] HU.

ρ = [0.34, 0.34, 0.22]
mm, βNPSF = 0.87

ρ = [0.44, 0.44, 0.28]
mm, βNPSF = 0.96

ρ = [0.54, 0.54, 0.34]
mm, βNPSF = 0.98
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R
es

id
ua

l

(d) (e) (f)

Fig. 4: NPSF noise preserving case for different ρ. Display
window: Results [-650, 1350] HU, Residuals [-200, 200] HU.

that β can be set to get the desired noise level in the result.

4. CONCLUSION

We propose a noise preserving sharpening filter (NPSF)
which sharpens CT images while retaining desirable noise
level and texture. To achieve this, the NPSF is trained with
image pairs that contain appropriately scaled noise in both the
blurred input and the high-resolution ground truth. Thereby
NPSF can control the level of sharpness and noise in the re-
sults with three user-adjustable parameters. The performance
of NPSF has been verified for a clinical application of reso-
lution improvement of scans acquired with an XL focal spot
and reconstructed with a high-resolution kernel. Quantitative
and qualitative evaluations show that NPSF outperforms the
conventional approaches.
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