A Noise Preserving Sharpening Filter for CT Image Enhancement

Madhuri Nagare¹, Jie Tang², Obaidullah Rahman³, Brian Nett², Roman Melnyk², Ken D. Sauer², Charles A. Bouman¹

PURDUE

Goal: To sharpen X-ray CT images while maintaining the desired texture

Challenges

- Noise-resolution trade-off
- \uparrow resolution \Leftrightarrow \uparrow noise
- CT images are noisy
- + \ patients' radiation exposure

Peek into literature

State-of-the-art **Convolutional Neural Networks**

How to get training pairs?

Ground truth (GT) : noise-free high-resolution image

Input: Blurred ground truth

Trends to tackle noise

Noise in training pairs

	No-Noise Sharpener	Denoising Sharpener
Input	Low	High
Ground truth	Low	Low
Function	Sharpening	Sharpening + Denoising

Substantially increases noise and artifacts for noisy input

Sharpened images lack radiologistspreferred texture

Our solution

Noise Preserving Sharpening Filter (NPSF) Generates training pairs, (Y_k, \tilde{X}_k) , that both account for noise in the input image

$$\lambda_1 = \alpha \sqrt{\frac{\sigma_{inp}^2}{\sigma_w^2}}$$

$$\lambda_2 = \beta \lambda_1$$

 X_k : noise-free high-resolution sample W_k : noise sample with desirable texture and variance σ_w^2 $G(\rho)$: Gaussian filter of standard deviation $\rho = [\rho_x, \rho_y, \rho_z]$ σ_{input}^2 : noise variance of input anticipated in the application

Conclusion: We proposed NPSF that preserves noise texture and level in the input image while sharpening, and thereby Produces favorable texture in sharpened images Preferred by radiologist because of consistent noise levels

¹Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA ²GE Healthcare, Waukesha, WI, USA ³Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA

NPSF Training Pairs

out

 \rightarrow noise std in the ' = 1training input matches the noise std anticipated in the application

 β is tuned to meet the noise preserving condition

ROI std (HU)

69.95

53.70

128.59

$\uparrow \rho \implies \uparrow$ sharpness

Can be employed for any machine learning algorithm

IEEE ICIP 2022 Paper #2637

31.70

Noise-resolution trade-off in the sharpened results is controlled by hyperparameters β , ρ , α .